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Simulation of texture evolution for nematic liquid crystalline
polymers under shear � ow

HOUJIE TU, GERHARD GOLDBECK-WOOD† and ALAN H. WINDLE*

Department of Materials Science and Metallurgy, University of Cambridge,
Cambridge CB2 3QZ, UK

(Received 12 May 2001; accepted 29 June 2001 )

The development of microstructure in nematic liquid crystalline polymers under shear � ow
is investigated through computational simulation. By using a tensorial expression for the
elastic torque, the nemato-dynamic equation is numerically resolved. The simulation shows
that elastic anisotropy has a strong in� uence on the evolution of the director and that the
‘log-rolling’ orientation of the directors emerges for tumbling nematics if the twist constant
is smaller than the splay and the bend constants, even though one starts from a structure in
which the directors are aligned within the velocity and velocity gradient plane. The interaction
of wedge disclination pairs subject to a shear � ow � eld is also simulated. The generation,
multiplication and interaction of inversion wall defects during shearing have been revealed.
In general the wall moves to the boundaries and is absorbed by the boundaries. When
two walls of opposite orientation meet, a loop may form, then shrink, and � nally collapse.
Correspondingly, if they have the same orientation, commutation will occur.

1. Introduction [2]. If the tumbling parameter l is equal to or greater
than unity, the extensional component of the shear � eldThermotropic liquid crystalline polymers (LCPs) are

used for mouldings and extrusions because of their good dominates and the director tends toward a steady state
orientation angle h with respect to the � ow direction [2]mechanical properties, and thermal and environmental

stability. One of the characteristics of LCPs is that they
are rich in microstructure, and striking birefringence tan h 5 Al Õ 1

l 1 1B1/2
(1)

is observed in a mesophase of LCPs in the polarizing
microscope. The orientation within an LCP can be

If l < 1, vorticity dominates over extension and thedescribed by a director � eld (n) [1], which is the average
director cannot � nd a steady state orientation, butalignment of the molecular mesogens, and it is the
tumbles continuously. The time taken for the directordiscontinuities and distortions in this � eld which give
to rotate through an angle of 2p is found to be [2]rise to the optical textures. Another feature of LCPs is

that defects can be generated and multiplied under shear
T 5

4p

cÇ (1 Õ l2 )1/2
(2)� ow, a phenomenon which is assumed to be associated

with their rheological properties. There is considerable
interest in the mechanism of the formation of these where cÇ is the shear rate. Meanwhile, a ‘log-rolling’
textures, their behaviour during injection or extrusion phenomenon has been found in experiments [3, 4] and in
processing, and their in� uence on the properties of the numerical simulations [5–7]; here the director aligns along
products. the vorticity axis, even though initially oriented within

The most successful dynamical continuum theory the shear plane, the plane containing the velocity axis
of nematic liquid crystals (LCs) is the Ericksen–Leslie and the velocity gradient axis. Figure 1 gives a schematic
theory [1], which predicts director tumbling and � ow representation of these types of director behaviour, i.e.
aligning behaviour in nematic LCs under shear. It can � ow-aligning, ‘log-rolling’ and tumbling.
be shown that an LC exhibits diŒerent � ow-induced The application of the Ericksen–Leslie theory involves
orientation modes, depending on various parameters two coupled and time dependent � elds: the velocity � eld

v(r, t) and the director � eld n (r, t). In the literature,
assumptions are usually made to simplify the velocity*Author for correspondence; e-mail: ahw1@cus.cam.ac.uk
and the director � elds or the expression of the elastic†Present address: Accelrys Ltd., The Quorum, Cambridge

CB5 8RE, UK. free energy. For example, the elastic terms may be
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336 H. Tu et al.

� eld’ generated by the spatial inhomogeneity of the
director. A tensorial form of the Frank free energy leads
to the following expression for h [15]

h
b

5 2n
aGk2Dn

a
n
b
1 (k1 Õ k2 )[ =

ac
n
c
n
b
1 =

bc
n
c
n
a
]

1 (k3 Õ k1 )C =
c
(n

c
n
l

=
l
n
a
n
b
) Õ

1
2

=
a
n
c
n
l

=
b
n
c
n
lDH

(4)

where the Greek subscripts refer to the Cartesian
components. The summation convention is used here,Figure 1. A schematic representation of the typical geometries
andfor: (a) � ow-aligning, (b) ‘log-rolling’ and (c) tumbling, and

the de� nition of the coordinate system. The orientation
in contact with the plates is envisaged as parallel to the =

a
5

q
qx

a

, =
ab

5
q2

qx
a
qx

b

, r 5 (x1 , x2 , x3 ) 5 (x, y, z)
velocity axis.

and k1 , k2 and k3 are the Frank elastic constants whichignored [8] owing to the high viscosity of LCPs, while
are associated with splay, twist and bend deformations,

a simple shear � ow, which uncouples the director and
respectively.

the velocity � elds, has been widely used in other pre-
A simple shear � ow is used throughout this paper.

vious studies [5, 9–12] and enables one to focus on the
The coordinate system and the shear � ow geometry are

eŒect of elasticity. Another simplifying assumption is the
shown in � gure 2. The origin of the coordinate systemadoption of equal elastic constants to simplify the elastic
is in the centre of the sample. For simple shear � ow, ifterm [10–14].
the shear rate is cÇ , then

In an associated paper, a tensorial expression for
the elastic torque is used as the basis for a numerical
algorithm which can handle the three unequal elastic

v 5 AcÇ x2
0

0 B C 5
1
2A0 cÇ 0

cÇ 0 0

0 0 0B V 5
1
2A0 cÇ 0

Õ cÇ 0 0

0 0 0B.constants [15], the algorithm being calibrated through
its prediction of Fréedericksz transitions. The simulation
results of the evolution of defects, in the absence of an

(5)external � eld, show that the type of distortion dramatic-
ally depends on elastic anisotropy, see preceding paper To render equation (3) dimensionless, we set
in this issue [16]. In the present paper, the algorithm is
used to simulate the dynamic behaviour of the director. t* 5 tcÇ , x*

a
5

x
a

D
(6)

The details of the governing equation are given � rst,
and then the eŒect of elastic anisotropy on � ow-aligning

where D is the distance between the two plates.
nematics and tumbling nematics is described. Finally,

Omitting ‘*’ in the � nal forms for the sake of simplicity,
the evolution of the wedge disclination under a shear
� ow is investigated.

2. Dynamic model
The Ericksen–Leslie equation that describes the

evolution of the director is [1]

qn

qt
1 v ¯ = n 5 V ¯ n 1 l(C ¯ n Õ C : nnn) 1

1
c1

(h Õ h ¯ nn)

(3)

where C and V are the symmetric and antisymmetric
Figure 2. A schematic representation of simple shear � ow.parts of the velocity (v) gradient tensor, which represent

The x, y and z are the � ow direction, the velocity gradient
the extensional and rotational eŒects, respectively, c1 direction and the vorticity direction respectively. The
and l are the rotational viscosity coe� cient and the vorticity direction (z) is perpendicular to the paper or the

shear plane (xOy).tumbling parameter, respectively and h is the ‘texture
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337Nematic L CPs; shear and texture evolution

equation (3) becomes
qn3
qt

5 Õ ln1n2n3 Õ x2n
a
= 1n3n

a
1

1
E

r
g3 (9)qn1

qt
5

1
2

n2[l(1 Õ 2n1n1 ) 1 1] Õ x2n
a
= 1n1n

a
1

1
E

r
g1

where
(7)

E
r
5

c1V D
k

(10)qn2
qt

5 Õ
1
2

n1[l(2n2n2 Õ 1) 1 1] Õ x2n
a
= 1n2n

a
1

1
E

r
g2

is the Ericksen number,
(8)

k 5 max (k1 , k2 , k3 ) (11)

is the largest elastic constant, V 5 cÇ D is the characteristic
velocity and the g

i
(i 5 1, 2, 3) correspond to the � nal

term of the right hand side of equation (3), and are
made dimensionless. In general

g
i
5 g

i
(n

a
n
b
, =

a
n
b
n
c
, =

ab
n
c
n
h
, k

a
/k). (12)

The director � eld in our approach is represented by
a set of directors in the cells of a spatially � xed cubic
lattice. For a given initial pattern and boundary con-
ditions, equations (7–9) can be integrated numerically

(a)

(b)

(a)

(b)

(c)

Figure 3. Flow-aligning angles of diŒerent layers in the y Figure 4. Free energy plots of the tumbling nematics with
l 5 0.5 at diŒerent Ericksen number: (a) 40.0 and (b) 400.0/s.direction with l 5 2.0 at diŒerent Ericksen numbers: (a) 4.0,

(b) 40.0 and (c) 400.0. Cases 0, 1, 2, 3 and 4 refer to k1 5 Cases 1, 2, 3 and 4 have the same meaning as in � gure 3.
The free energies are normalized by the maximum valuek2 5 k3 5 0, k1 5 k2 5 k3 , 10k1 5 k2 5 k3 , k1 5 10k2 5 k3 ,

k1 5 k2 5 10k3 respectively. seen under any conditions (i.e. the peak values for case 1).
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338 H. Tu et al.

by a standard technique in which the � nite diŒerence
scheme is used to discretize the elastic and the convective
terms.

3. Shearing of defect-free structures
As mentioned above, � ow-aligning and tumbling are

analytically predicted for nematics if no elastic eŒect is
considered. However, it is beyond doubt that elastic
anisotropy has a strong eŒect on the microstructures of
nematic LCPs, and the current algorithm is used to
simulate how elastic anisotropy aŒects the behaviour of

Figure 5. Tumbling angle of the director in the centre of a
the directors under a simple shear � ow.

cell with l 5 0.5 and the Ericksen number 40.0. Cases 1,
2, 3 and 4 have the same meaning as in � gure 3, and
case 0 represents no elasticity.

Figure 6. An xOy slice of the director pattern with l 5 0.5
and k1 5 k2 5 k3 ; every plane has the same con� guration.
The colour coding in this and further similar � gures is an
additional indication of orientation with variation across
the blue–green part of the spectrum corresponding to the
director orientation between the x and y axes.

(a)

(b)

(c)

Figure 8. Evolution of the half-disclination pair under shear
Figure 7. Spherical angles w and h of the director in the � ow. The director patterns at diŒerent time steps are

given: (a) time step 0, (b) time step 2000 and (c) timecentre of the cell with l 5 0.5 and the Ericksen number
40.0 in case 3. step 4000.
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339Nematic L CPs; shear and texture evolution

In this section, the following cases (0, 1, 2, 3 and 4), tilt towards the � ow direction with a given angle. The
elastic torque is expected to aŒect the distribution ofrefer to the situations where k1 5 k2 5 k3 5 0, k1 5 k2 5 k3 ,

10k1 5 k2 5 k3 , k1 5 10k2 5 k3 and k1 5 k2 5 10k3 , respectively. the directors via the imposed boundary conditions. The
equilibrium state is the one in which these two kinds ofThese have been chosen to represent the cases of no

elasticity, equal constants, small splay constant, small torques are balanced. The current model can be used to
reveal the existence of the boundary layer.twist constant and small bend constant, respectively.

The simulations are performed on a 31 3 21 3 11 lattice, Figure 3 shows the � ow-aligning angles of the directors
in diŒerent layers with the y direction, using l 5 2.0,using planar boundary conditions in the velocity gradient

direction and periodic boundary conditions in the directions for diŒerent Ericksen numbers and elastic constants.
According to equation (1), the � ow-aligning angle shouldof both velocity and vorticity. The initial pattern is a

mono-domain, oriented in the velocity direction. be 30 ß in this case without elasticity. As shown in � gure 3,
the elastic constants have an eŒect on the � ow-aligning
angles. If no elastic eŒect is considered (case 0), the � ow-
aligning angle is consistent with the theoretical result. In3.1. Flow-aligning and the boundary eVect

According to theory [2], for � ow-aligning nematics all other cases, the pattern is aŒected by the boundaries.
If the Ericksen number is very small, for example E

r
5 4.0,(l > 1.0), the viscous torque will drive the director to

Figure 9. Polarized light intensity pro� les at diŒerent time steps with l 5 1.0, E
r 5 1000.0, k1 5 k2 5 k3 5 10 Õ 11 N, Dt 5 10Õ 3 s.

Homeotropic and periodic boundary conditions are used for the y and the x directions, respectively. The lattice used is
200 3 100 3 1. The initial pattern has two ‘parallel’ defect pairs. Time step: (a) 0, (b) 7000, (c) 13 000, (d) 18 000, (e) 36 000 and
( f ) 43 000. The corresponding director distribution within the dashed square area of ( f ) is given in � gure 11 (a).
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340 H. Tu et al.

the elastic eŒect dominates the pattern; see � gure 3 (a). 3.2. T umbling and ‘log-rolling’
Theoretical analysis has revealed that, for tumblingIf the Ericksen number is increased to E

r
5 40.0 and

E
r
5 400.0—� gures 3 (b) and 3 (c), respectively—a � ow- nematics (l < 1.0), the director will continuously rotate

in the shear plane [2]. However, in some circumstances,aligning domain is established in the centre, with the
same � ow-aligning angle as predicted by equation (1). elastic torque will result in ‘log-rolling’ of the directors

where the elastic torque drives the directors out of theMeanwhile, the boundary layer becomes narrower.
In this speci� c con� guration, the � ow-aligning angles shear plane and they eventually orient along the vorticity

direction.are not sensitive to the twist and bend constants. As

shown in � gure 3, cases 1, 3 and 4 have similar distri- If the initial structure is an in-plane structure, for
example, a mono-domain con� guration, the directorsbution of � ow-aligning angles. However the boundary

layers of case 2 are thinner than any of the other cases. will rotate within the shear plane as shown by the plots

of the total free energy of the system in � gure 4.The reason for this is that the distortion in boundary
layers has no twist component and is predominantly Figure 4 (a) shows that tumbling occurs in cases 2 and 4,

in which the system has either a lower splay or a lowerof the splay type; therefore the elastic torque mainly
decreases with the splay constant in this particular bend constant, with E

r
5 40.0. However, the director

does not keep rotating in the case of equal constantscon� guration.

Figure 10. Polarized light intensity pro� les at diŒerent time steps with l 5 1.0, E
r 5 1000.0, k1 5 k2 5 k3 5 10Õ 11 N, Dt 5 10Õ 3 s.

Homeotropic and periodic boundary conditions are used for the y and the x directions, respectively. The lattice used is
200 3 200 3 1. The initial pattern has two ‘antiparallel’ defect pairs. Time step: (a) 0, (b) 4000, (c) 12 000, (d) 19 000, (e) 25 000,
( f ) 33 000, (g) 38 000 and (h) 50 000. Two walls are generated in (d) and the walls move toward the boundaries as shown in (e);
they are absorbed by the boundaries, see ( f ). The corresponding director distribution within the dashed square area in ( f ) is
given in � gure 11 (b); (h) shows � ow-aligning and a defect free pattern.
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341Nematic L CPs; shear and texture evolution

(case 1). This shows that the system can � nd a balance It clearly shows two plateaus, corresponding to the two
steady states. The second plateau shown in � gure 7 refersbetween the elastic torque and the viscous torque. The
to the log-rolling state.balance is broken if the Ericksen number is increased,

as shown in � gure 4 (b), in which the Ericksen number
4. Shearing of wedge disclination pairs: a twois 400.0. If the twist constant is smaller than the splay

dimensional simulationand the bend constants (case 3), the directors cannot
LCPs are found to show rich textures under shearmaintain tumbling within the shear plane, as shown

� ow, but how these textures are created is still unclear.in both � gures 4 (a) and 4 (b). Instead, the directors
The high viscosity of LCPs makes it di� cult to removeeventually turn into the vorticity direction, which is the
all the defects in the samples, especially in the caseenergetically favoured state.
of thermotropic LCPs. The defects observed, both inAccording to equation (4), when starting from the
experiments and numerical simulations, are often halfin-plane structure, i.e. n3 5 0, we have h3 5 0 and it leads
strength disclinations and they always appear in pairs.to there being no out-of-plane component according to
So it is worthwhile to simulate the behaviour of pairs ofequation (9). The only reason for the ‘log-rolling’ of the
half-disclination under a shear � ow.directors is that a small disturbance is ampli� ed and

For the sake of simplicity, a two-dimensional modelthe bifurcation of the stable state develops if the twist
is used. This 2D simulation can also be compared withconstant is small enough. In the simulations, the disturb-
an experimental observation of a very thin nematicance is the numerical truncation error. In the physical
sample under a steady shear condition using a parallelworld, a � uctuation could be considered as the disturb-
plate rheometer or optical shear cell. Whereas the simu-ance. The interesting point is that we can only see this
lations may provide the information of texture evolutionbifurcation in the case of a low twist constant. In the

other cases, the numerical truncation error seems not

to be ampli� ed. This coincides with the observation of
‘log-rolling’ in some LCPs during shearing [3, 4], as the

twist constant is proposed to be the lowest for main

chain LCPs.

The variation of the rotation angle (w) of the director

with the strain, in the cell at the centre of the bulk, is

presented in � gure 5. According to equation (2), the

strain period is cÇ T 5 14.51 for l 5 0.5 during which

the director rotates through an angle of 2p without the
elastic eŒect. The computational result is in good agree-

ment with the theoretical prediction in the case of no

elasticity (case 0). It takes longer time for the director

to rotate by an angle of 2p, when the splay or the bend

constant is smaller than the others, as in cases 2 and 4

shown in � gure 5. With the condition of equal elastic

constants (case 1 in � gure 5), the director shows a � ow-
aligning characteristic . It rotates at the beginning and

then � nds a stable state. The stable director � eld is

shown in � gure 6.

With a small twist constant (case 3 in � gure 5), the

evolution of the director is the same as in the case of

equal elastic constants until the bifurcation develops.

As a result, the director loses its stable orientation and
points out-of-plane. It gradually turns to the vorticity

direction. Simultaneously, the director keeps rotating

about the vorticity axis. In other words, the director per-

forms a motion which has been described as ‘kayaking’

until it reaches another stable state. Figure 7 gives

(a)

(b)

the variation of w (the angle between the director and the
Figure 11. Typical director distribution of the inversion

velocity direction in the shear plane) and h (the angle walls: (a) ‘parallel’ walls, corresponding to � gure 9 ( f );
(b) ‘antiparallel’ walls, corresponding to � gure 10 ( f ).between the director and the vorticity axis) with strain.
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342 H. Tu et al.

in the shear plane, it is not easy to observe this experi- can be generated by the following equations [17]
mentally. Using a rheo-optical technique, the texture

n1 5 cos w, n2 5 sin w (13)evolution can be viewed in the plane perpendicular to
the direction of the velocity gradient. The results of

w 5 w0 1 0.5 arctan
y Õ y1
x Õ x1

Õ 0.5 arctan
y Õ y2
x Õ x2

these observations should be viewed as an average of all
of the layers. Numerical simulation can therefore be

(14)helpful in understanding this issue. In the simulations
reported below, we have set the model parameters to

where (x1 , y1 ) and (x2 , y2 ) are the coordinates of thethe following values: l 5 1.0 for � ow aligning, k1 5 k2 5
1 1/2 and Õ 1/2 defect cores, respectively, and w0 is ak3 5 1.0 3 10 Õ 11 N. Homeotropic and periodic boundary
constant that de� nes the relative orientation betweenconditions are used for the y and x directions, respectively.
the two defects.

Figure 8 shows the patterns of the director at diŒerent
4.1. Deformation of a wedge disclination pair under time steps. The lattice is 60 3 30 with planar boundary

shear � ow conditions in the y direction and free boundary con-
We start from a single wedge disclination pair. The ditions in the x direction, and k1 5 k2 5 k3 is used. Due

behaviour of the pair of half-disclinations is essential to the convectional eŒect, 1 1/2 and Õ 1/2 disclination
to our understanding of the interaction of the wedge move upstream and downstream, respectively. The

distortion between the 1 1/2 disclination and the Õ 1/2disclination pairs under shear � ow. The initial pattern

Figure 12. Interaction of the two ‘parallel’ walls. The conditions of the simulation are the same as that in � gure 9. At time step:
(a) 9000, (b) 10 000, (c) 11 000, (d) 12 000 and (e) 13 000.
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343Nematic L CPs; shear and texture evolution

disclination is stretched to form a wall structure. It shows the boundaries and to be eventually absorbed by the
boundaries. For example, in � gure 10 two walls graduallythat the 1 1/2 disclination conserves its own orientation

with respect to the wall as the strain is increased, while either move up or move down to the boundaries, from
time cycle 19 000 to time cycle 25 000 as shown inthe orientation of the Õ 1/2 disclination rotates clock-

wise. This causes the wall in the vicinity of the Õ 1/2 � gures 10 (d) and 10 (e). These two walls disappear as
shown in � gure 10 ( f ). In � gure 10 (h), i.e. in the ‘anti-disclination to rotate and wind up. Lavine and Windle

[13] gave a detailed explanation of this phenomenon, parallel’ case, all defects are � nally annihilated and the
system reaches � ow-aligning with two very thin boundaryand considered three-dimensional implications.
layers.

4.2. Interaction of wedge disclination pairs under shear
� ow

The key point of the behaviour of a single half-
disclination pair under shear � ow is the formation of an
inversion wall. In reality, there is always a host of defects
in the system, and as a next stage we consider the
interaction between two pairs of half-disclinations.

The superposition rule is valid in the case of equal
elastic constants, so the initial pattern can be described
by the following equation

w 5 w0 1 0.5Aarctan
y Õ y1
x Õ x1

1 arctan
y Õ y3
x Õ x3

B
Õ 0.5 Aarctan

y Õ y2
x Õ x2

1 arctan
y Õ y4
x Õ x4

B (15)

where (x1 , y1 ) and (x3 , y3 ) are the coordinates of the cores
of the two 1 1/2 disclinations, (x2 , y2 ) and (x4 , y4 ) are the
coordinates of the cores of the two Õ 1/2 disclinations.

In the following simulations, two kinds of initial
patterns are used. These are ‘parallel’ defect pairs and
‘antiparallel ’ defect pairs, in which the lines starting from
the core of the Õ 1/2 defect to the core of the 1 1/2
defect are parallel and antiparallel, respectively. Homeo-
tropic boundary conditions are used in the y direction
and periodic boundary conditions are used in the x
direction.

Figures 9 and 10 give predicted polarized light intensity
pro� les at diŒerent time steps during shearing. The
lattice size in � gure 9 is 200 3 100 3 1 and E

r
5 1000.

The initial director distribution, with two ‘parallel’ defect
pairs, is shown in � gure 9 (a), where w0 5 0. Figure 9
shows that the textures are generated and deformed under
shearing. Figure 10 is an example starting from two ‘anti-
parallel’ defect pairs. The lattice used is 200 3 200 3 1,
E

r
5 2000, and w0 5 0.375 p.
Wall defects can be observed from both simulations

(� gures 9 and 10) as a result of shearing. The observed
evolution of the textures stems from a combination of
the viscous torque and the interaction of the two pairs
of disclinations. A close examination of these two simu-
lations reveals that diŒerent initial patterns can give rise
to very diŒerent texture evolution. In both cases the

(a)

(b)

(c)

walls tend to align along the � ow direction due to the Figure 13. Director maps (a–c) in the local area highlighted
by the dashed rectangle in � gures 12 (a–c), respectively.velocity gradient. They are also found to move towards
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However, if the initial pattern has two ‘parallel’ the director � eld of ‘antiparallel ’ walls, which is high-
lighted (dashed square) in � gure 10 ( f ), and shows that thedefect pairs as in � gure 9, a large number of walls can

be generated and maintained before disappearing at the distortions in all the walls have the opposite orientation.
When two walls meet, the interaction between themboundaries. ‘Junctions’ can be formed by the interaction

between the walls, as shown in � gures 9 (e) and 9 ( f ). mainly depends on the type of these walls, i.e. ‘parallel’
or ‘antiparallel’. If two ‘parallel’ walls meet, they willThe ‘junctions’ can be seen from the director distri-

bution, highlighted in � gure 9 ( f ) and shown in detail interpenetrate each other. Figure 12 gives an example.
Two walls near the bottom plate meet as shown inin � gure 11 (a). The director is generally parallel to the

� ow-aligning direction except in the region of the wall. � gures 12 (b) and 12 (d ). The results of the interaction of
these two walls can be described as follows and areThe change in the director orientation is 180 ß on crossing

the wall. shown in � gures 12 (c) and 12 (e), respectively. One end
of the � rst wall attaches to the middle of the secondCorresponding to the ‘parallel’ and ‘antiparallel ’ pairs,

two types of walls are observed: ‘parallel’ and ‘anti- wall. The second wall has now been divided into two
parts, one of which combines with the � rst wall andparallel’ walls. Figure 11 (a) gives the director � eld of

‘parallel’ walls and shows that the distortions in all the forms a new wall. The other part is separate from the
new wall. The director maps of the local areas are givenwalls have the same orientation. Figure 11 (b) gives

Figure 14. Interaction of two ‘antiparallel’ walls. The conditions of the simulation are the same as for � gure 10. At time step:
(a) 32 000, (b) 33 000 and two walls emerge, (c) 34 000 and the two walls meet, (d) 35 000 and a loop generates, (e) 36 000 and
the loop is shrinking, ( f ) 38 000 and � nally the loop disappears.
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in � gure 13. When two antiparallel walls meet, two walls situation, the presence of disclinations can generate
wall-type defects which will increase in density withunite to generate a loop, as shown in � gure 14. The loop

keeps shrinking and � nally collapses. Therefore, a � ow- increasing strain.
aligning can be achieved in this case. Defect pairs are

The authors would like to thank the EPSRC forrandomly oriented in a real system, so both the textures
support under its ‘Processing of conventional structuralsimulated in � gures 13 and 14 are expected to emerge
materials’ programme.simultaneously.
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